Cell membrane and nuclear estrogen receptors (ERs) originate from a single transcript: studies of ERalpha and ERbeta expressed in Chinese hamster ovary cells.
نویسندگان
چکیده
The existence of a putative membrane estrogen receptor (ER) has been supported by studies accomplished over the past 20 yr. However, the origin and functions of this receptor are not well defined. To study the membrane receptor, we transiently transfected cDNAs for ERalpha or ERbeta into Chinese hamster ovary (CHO) cells. Transfection of ERalpha resulted in a single transcript by Northern blot, specific binding of labeled 17beta-estradiol (E2), and expression of ER in both nuclear and membrane cell fractions. Competitive binding studies in both compartments revealed near identical dissociation constants (K(d)S) of 0.283 and 0.287 nM, respectively, but the membrane receptor number was only 3% as great as the nuclear receptor density. Transfection of ERbeta3 also yielded a single transcript and nuclear and membrane receptors with respective Kd values of 1.23 and 1.14 nM; the membrane receptor number was only 2% compared with expressed nuclear receptors. Estradiol binding to CHO-ERalpha or CHO-ERbeta activated Galphaq and G(alpha)s proteins in the membrane and rapidly stimulated corresponding inositol phosphate production and adenylate cyclase activity. Binding by 17-beta-E2 to either expressed receptor comparably enhanced the nuclear incorporation of thymidine, critically dependent upon the activation of the mitogen-activated protein kinase, ERK (extracellular regulated kinase). In contrast, c-Jun N-terminal kinase activity was stimulated by 17-beta-E2 in ERbeta-expressing CHO, but was inhibited in CHO-ERalpha cells. In summary, membrane and nuclear ER can be derived from a single transcript and have near-identical affinities for 17-beta-E2, but there are considerably more nuclear than membrane receptors. This is also the first report that cells can express a membrane ERbeta. Both membrane ERs activate G proteins, ERK, and cell proliferation, but there is novel differential regulation of c-Jun kinase activity by ERbeta and ERalpha.
منابع مشابه
Plasma membrane estrogen receptors exist and functions as dimers.
A small pool of estrogen receptors (ERalpha and -beta) localize at the plasma membrane and rapidly signal to affect cellular physiology. Although nuclear ERs function mainly as homodimers, it is unknown whether membrane-localized ER exists or functions with similar requirements. We report that the endogenous ER isoforms at the plasma membrane of breast cancer or endothelial cells exist predomin...
متن کاملNature of functional estrogen receptors at the plasma membrane.
Although rapid signaling by estrogen at the plasma membrane is established, it is controversial as to the nature of the receptor protein. Estrogen may bind membrane proteins comparable to classical nuclear estrogen receptors (ERs), but some studies identify nonclassical receptors, such as G protein-coupled receptor (GPR)30. We took several approaches to define membrane-localized estrogen-bindin...
متن کاملNuclear Hormone Receptor Activity of Polybrominated Diphenyl Ethers and Their Hydroxylated and Methoxylated Metabolites in Transactivation Assays Using Chinese Hamster Ovary Cells
BACKGROUND An increasing number of studies are reporting the existence of polybrominated diphenyl ethers (PBDEs) and their hydroxylated (HO) and methoxylated (MeO) metabolites in the environment and in tissues from wildlife and humans. OBJECTIVE Our aim was to characterize and compare the agonistic and antagonistic activities of principle PBDE congeners and their HO and MeO metabolites agains...
متن کاملLocalization of androgen and estrogen receptors in adult male mouse reproductive tract.
There is considerable variation, both within and between species, in reports of nuclear steroid receptor localizations in the male reproductive tract. In this study, androgen receptor (AR) and estrogen receptors ERalpha and ERbeta were visualized by immunohistochemistry in adult male mice reproductive tracts, including testes, efferent ductules; initial segment, caput, corpus, and cauda epididy...
متن کاملEstrogen receptor-beta is the predominant estrogen receptor subtype in human oral epithelium and salivary glands.
Many studies have shown that the oral mucosa and salivary glands are sensitive to estrogen action. However, the expression of estrogen receptors (ERs) within these tissues is an area of controversy. ERs exist as two subtypes (ERalpha and ERbeta), and we hypothesized that the incongruity between ER expression and estrogen sensitivity may result from differential expression of ER subtypes in oral...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular endocrinology
دوره 13 2 شماره
صفحات -
تاریخ انتشار 1999